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Abstract

We explore methods for dynamic classification of visi-
tors to an e-commerce web site based on visit sequences
of page accesses. The time aspect is important in the
processing of such data, and we require techniques that
yield information before a customer’s full sequence is
realized. Further, we recognize that the timing of clas-
sification decisions may be important.

We focus on prediction of purchases based on site
navigation paths, and explore two related problems.
The first is incremental estimation of purchase probabil-
ities. We develop a probability estimation model based
on mixtures of Markov chains, and develop several ex-
tensions. Second, we consider dynamic classification of
visits into “buy” and “non-buy” classes. We assume
that at each click the merchant has three options: clas-
sify the visit as a “buy” visit, classify the visit as a
“non-buy” visit, or await further information to be re-
vealed. We examine dynamic decision rules—derived us-
ing dynamic programming—for generating these classifi-
cations from estimated probabilities, and compare them
to schemes based on fixed probability thresholds.

We illustrate our methodologies on a real web
log data set from a large retailer of computers. We
demonstrate that probability estimation models based
on second- and higher-order transition information out-
perform models of lower order. We show that both the
fixed thresholds and the dynamic decision rules outper-
form a simple classification heuristic, and can be tuned
to trade off the speed and accuracy of detection of both
purchase visits and non-purchase visits.

Keywords: Markov models, dynamic programming,
web mining.

1 Introduction

Despite the recent ups and downs of many companies
doing business on the Internet, it is clear that electronic
commerce has taken a firm hold. The questions of how
best to understand and market to customers through
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interactive media remain interesting and unsolved. Web
personalization and electronic Customer Relationship
Management (eCRM) have become buzzwords in both
industry and academia.

A merchant doing business over an interactive
medium faces the challenge of making use of the data
available to him to dynamically manage his individual
customer relationships. Although demographic and his-
torical behavior information is valuable, the dynamics
of the customer relationship are captured by evolving
sequences of customer interactions. An Internet “click”
sequence is a prime example of evolving data that gives
timely information about a customer.

In this paper, we investigate approaches to time-
sensitive classification of data sequences. We look at
methods that are incremental, meaning that they can
provide useful information about a customer before
the customer’s full data sequence is revealed. This
allows the merchant to take an appropriate action
while the customer is still in the system. We require
decision processes that are sensitive to time and to
the inherent tradeoff between gathering information and
taking action. That is, we recognize that when to make a
decision may be as important as what decision to make.

Our practical motivation is the problem of dynamic
prediction of purchases on an e-commerce web site at
the visit (or session) level. Qur proposed methodology
has two components: a model for estimating purchase
probabilities and a time-sensitive framework for using
these probabilities to make actionable classification de-
cisions. Such classification decisions are potentially use-
ful for personalization and timing of marketing interven-
tions and promotions, for customization of site content,
and for allocation of server resources.

The contributions of this paper are the following:

1. A class of models for fast incremental es-
timation of purchase probabilities based on
click sequences. Our basic method is a Bayesian
scheme involving mixtures of low-order Markov
models of web navigation. Our scheme can be seen
as a special case of both Hidden Markov Models [14]
and Mixtures of Experts [8]. We also develop ex-
tensions of the technique for incorporating higher-
order transition information, the elapsed time be-
tween clicks, and features such as demographic or
browsing history variables.



2. Two frameworks for generating actionable,
time-sensitive decision rules for classifica-
tion. Given an estimated probability of purchase
at some point in time, does the merchant (a) clas-
sify the visit as a “buy” visit, (b) classify the visit as
a “non-buy” visit, or (c) wait for more information
to be revealed? The question couples a classifica-
tion problem with a stopping problem. We examine
it within the class of fixed threshold policies, and
also through dynamic programming.

3. INlustration of our approaches on a real web
log data set from a large computer retailer.

The organization of the paper is as follows. In Sec-
tion 2 we briefly review related work in the data mining
and marketing domains. In Section 3 we present and
derive the models used for estimation of purchase prob-
abilities and generation of decision rules. We describe
in Section 4 experience and results from applying our
methodology to a real dataset from a large computer
retailer. Finally, in Section 5 we present conclusions
and future research directions.

2 Related Work

The business value of web navigation data is widely rec-
ognized, and many methods for analyzing such data
have appeared in the data mining literature. Recent
conference workshops on web data mining (see [18] and
[20]) highlight some of the latest research in the gen-
eral area of web data mining. In addition, the paper by
Srivastava et. al. [19] introduces and surveys the area
of web usage mining. Kohavi [9] and references review
opportunities and pitfalls in the practice of e-commerce
data mining. The KDD-Cup 2000 competition show-
cased some of the most promising web usage mining
practice through analysis of a real e-commerce data set.
A summary can be found in Kohavi et. al. [10].
Popular approaches to web usage mining are those
based on discovery of common sequential patterns and
association rules (see Agrawal and Srikant [1]), on appli-
cation of popular classification and clustering methods
to feature representations of the data, and on invention
of novel distance metrics for use in distance-based clas-
sification and clustering techniques. We employ a prob-
ability estimation methodology based on a Markovian
model of web navigation behavior, and it has the ad-
vantages of providing a sound probabilistic framework
conducive to extensions and of capturing the sequential
nature of the data. Our work, in addition to the re-
cent findings of Li et. al [11], demonstrates the value of
the sequential aspect of web usage data. Popular clas-
sification methods such as support vector machines and
tree-based classifiers operate in feature spaces of fixed
dimension, and thus cannot naturally accomodate click
sequences of variable lengths without some loss of infor-

mation.

The application of Markov chain models to web
data is not new. Cadez et. al. ([4], [5]) use mixtures of
Markov chain models for clustering and visualizing web
usage data. In particular, our content categorization
scheme and modeling assumptions are similar to theirs
(see also papers by Smyth [16],[17], and references
therein). Models based on Markov chains for predicting
page accesses in a web navigation context have been
employed recently by Deshpande and Karypis [7] and by
Anderson et. al. [2]. While ours is a supervised learning
task, we are interested not in predicting future page
views but in predicting the class to which a given visit
belongs. Markov chain-based analysis of sequences has
long been used in fields such as computational biology
and speech recognition, and our prediction approach can
be seen as a special case of both Hidden Markov Models
(see Rabiner [14]) and Mixtures of Experts (see Jordan
and Jacobs [8]).

Analysis and modeling of web data is also of inter-
est to the marketing community, and recent examples of
work examining e-commerce purchase behavior are Moe
and Fader [12], who develop statistical models of pur-
chase behavior based on observed visit history, and Sis-
meiro and Bucklin [15], who examine purchase behav-
ior by modeling completions of certain purchase-related
tasks. Padmanabhan et. al. [13] train neural network,
tree-based, and regression models to feature represen-
tations of web navigation data to illustrate the value
of a customer’s navigation data external to a specific
site. Perhaps closest to our work is the recent working
paper of Li et. al. [11], which shares our focus on the
use of detailed navigation paths to predict purchases
within visits. They develop a complex statistical model
of web navigation that includes a hidden Markov com-
ponent. The methods proposed for model fitting and
purchase prediction are more computationally intensive
than ours, and the authors examine information, such
as visitor demographics and browsing behavior at other
sites, that may not be available to a retailer. Thus their
work has a more descriptive but less operational focus
than ours.

Our work is distinguished by our development of a
dynamic classification framework, in which we solve a
decision problem to trade off the quality and timeliness
of our classification decisions. Cost-sensitive data anal-
ysis is a line of research that accounts for the tradeoffs
among the prediction accuracies achievable for different
classes. A bibliography on cost-sensitive data analysis
can be found in [21], and a classic reference on statistical
decision problems is [6].

3 Models and Methodology

3.1 Problems and Notation. We will use the term
“click” to denote a single page view on an e-commerce



web site. We assume that we can attribute these page
views to a user or consumer of the web site (e.g.,
through the use of cookie identifiers), and that we have a
mechanism for segmenting the page views attributed to
a single user into meaningful consecutive subsequences,
or visits.

Our work takes the point of view of a merchant who
observes a single visit sequence of clicks (i,4s,...,ir),
where the length T of the sequence is assumed unknown.
We assume discrete time and that each click is taken
from a finite alphabet Z, which in our implementation
will represent a set of URL categories.

As mentioned in the paper introduction, we ad-
dress two related problems. The first is estimation of
the probability that a visit results in a purchase. We
develop models that estimate these probabilities based
only on the sequence of clicks I; = (i1,...,%) up to the
tth click. We also develop a model that estimates pur-
chase probabilities based on I; and 6, a variable whose
value is known at the outset of the visit. Examples
of such variables include demographic information and
browsing or purchasing histories. We develop another
model that estimates purchase probabilities based on
I and E; = (e1,e2,...,e:—1), where ¢; is the elapsed
number of seconds between click i; and ;1.

We also consider dynamic classification of visits
into “buy” and “non-buy” visits. We assume that
a merchant observes a visit evolving in the system.
Immediately following click ¢, the merchant can classify
the visit as a “buy” visit, classify the visit as “non-
buy” visit, or make no classification. Once the visit has
been classified, the decision is assumed irreversible. As
the length of the visit sequence is unknown, we observe
that failing to take an action at some point in time may
result in the visit ending (i.e., the customer leaving the
system) before any action is taken.

3.2 Model-Based Estimation of Purchase Prob-
abilities

The First-Order Model. Our basic model probabil-
ity estimation model is a mixture of two Markov chains:
a “buy” chain that models visits that result in purchases
and a “non-buy” chain that models visits that do not
result in purchases. We indicate by B the event that an
incoming visit is generated by the “buy” chain and by
N the event that the visit is generated by the “non-buy”
chain. We assume that, prior to the first click, nature
assigns a visit randomly to the “buy” chain with prob-
ability p = Pr{B} and to the “non-buy” chain with
probability (1 — p). The ensuing sequence of clicks is
then assumed to be generated by the respective Markov
chain. The Markov chain models include starting and
ending states to model sequences of finite length, and
are parameterized by transition probability matrices P2
and PVN. As an illustration, Figure 1 is the state dia-

gram for such a mixture model with Z = {“a”, “b”}.

We can think of the model as a special case of
a hidden Markov model (HMM) with the transition
matrix constrained to be block-diagonal. Fitting such
a model from a set of training data is straightforward.
The maximum likelihood estimates of the starting and
transition probabilities are given simply by normalized
transition counts observed among purchase visits and
non-purchase visits in a training data set. The mixture
probability p can be estimated by the fraction of visits
in the training data that result in a purchase.

Once we have fit the model parameters, we can
then dynamically score new sequences easily. Given
the mixture probability p and the parameters of the
Markov chain models, it is a simple application of Bayes’
Rule to compute the probability that a new incoming
sequence is being generated by the “buy” chain. If we
have observed the partial sequence Iy = (i1,42,.-.,4t),
our estimate of the probability of purchase is then:

p - Pr{li|B}

Pr{B|I;} = :
B = BBy + (= p) - PrLINT
where:
PI’{Ith} = PUJ:JH ijlv,iz T F)i]tv—lqit ’
Pr{ItlB} = P(fh P’i?,iQ U ‘P’ij?—lvit .

Pr{B|I;} can thus be quickly updated for each click
in the visit sequence, thus providing at all points in time
an updated estimate of the purchase probability.

The basic model as we have developed it is a mix-
ture of first-order Markov chains. That is, conditional
on whether a visit is generated by the “buy” or “non-
buy” chain, we assume that the category of the next
click in the visit depends only on the category of the
current click.

The Zero-Order Model. An even simpler model
than the mixture of first-order Markov chains involves
replacing the first-order Markov chains with zero-order
Markov models. Such models assume that each click
is an independent random variable chosen from one
of two multinomial distributions. Call the vectors of
multinomial probabilities p"V and p? for the “non-buy”
and “buy” models respectively. We can then find the
estimated probability of purchase as follows:

p - Pr{l;|B}

Pr{B|I,} = ,
B = e Ty + (1 — p) - PrTINY
where:
Pr{lN} = plpy---pi,
Pr{l|B}Y = plph---pj .

Higher-Order Models. The first-order model makes
use of one-step transitions in the visit sequence. We



Figure 1: Mixture of First-order Markov Chains.

can obtain richer models by considering mixtures of
higher order Markov models. For instance, a mixture of
second-order Markov models assumes that, conditional
on the visit being generated by either the “buy” or “non-
buy” model, the category of the next page request in a
visit depends on the previous two page requests (Note
that the ¢ = 1 case must be handled specially.).

Fitting a mixture of nth-order Markov models re-
quires estimation of O(]Z|™) probabilities from the train-
ing data. A significant complication with such models
is that of poor coverage. That is, there may be many
transitions in the model for which there are few or no
corresponding examples in the training data set, making
it difficult to accurately estimate model parameters.

An approach which attempts to avoid this difficulty
is to use a model that at each click uses transition
information of different order depending on the coverage
in the training data set. Deshpande and Karypis [7]
study an approach with this flavor for predicting the
next web page request in a visit.

We have implemented a version of our model that
includes higher-order transition information in a related
way. The model’s transition probabilities can be stored
in an (|Z| + 1)-ary tree 7 in which a node at depth
m > 1 corresponds to a unique set of m — 1 previous
clicks. At the node corresponding to the sequence
{ij=1,--.,1j—m—1}, we store the transition probabilities:

PI‘ (ij|7:j_1, N ,ij—m—l, {7:]'_1, ey ij_m—Q} ¢ T, N)
for each i; € Z,

.,ij,mfz} ¢ T, B)
for each i; € 7.

Pr (7:]'|Z'j,1, e ,ij,mfl, {ijfl, ..

After generating a full tree up to a prespecified
depth, we prune the tree based on the number of train-
ing set observations available to estimate the transition

probabilities at each node. The pruned tree represents
a mixture of Markov models of variable order.

When we score a new sequence I;, the probabilities
Pr(i;|I;—1,N) and Pr(i;|I;_,, B) are obtained by find-
ing the deepest node in the tree consistent with the se-
quence [;_1. The estimated probability of purchase can
then be obtained using Bayes’ Rule as before, where:

Pr{l}|N} = Py Pr(is[Ii,N)---Pr(is|I;—1,N),
Pr{l}|B} = Py, Pr(iz|l1,B)---Pr(is|I; 1, B).
Incorporating Other Covariates. The models we

have discussed so far take into account only the sequence
of page views, but in general we may want the capability
to incorporate other types of information into the
model. We briefly discuss ways to do this.

Suppose we would like to account in the first-order
Markov chain mixture model for a variable 8, a (possibly
multivariate) random variable that takes a value at
the outset of each visit. Examples of #’s of this type
include demographic variables and features derived from
a customer’s historical browsing or purchasing behavior
(e.g. the amount of time spent by a customer on the
site in the past, the number of previous visits, and the
time since the last purchase). We assume the following
quantities are functions of 6:

p6) =

Pl .06 =

PP, (0) =

With this notation established, our estimated purchase
probability for the click sequence I; = (i,...,4;) is

given by the same application of Bayes’ Rule as before,
but conditional on the value of 6:

Pr{B|6} ,
Pr{i]-|ij_1, N, 9} 5
Pr{ij|ij_1, B, 0} .



Pr{B|I,,0} =
p(6) - Pr{1,|B,8)
p(0) - Pr{1,]B,0} + (1 - p(0)) - P{LIN, 8} °

where:
Pr{LIN,0} = PX . (O)PY,0)---PY .0,
Pr{L|B,0} = Py, 0)PF,©6)---PF .(6).

If @ takes values of zero or one, then we can fit this
model by estimating p(f) and the Markov chain tran-
sition probabilities separately for each value of 8. If 8
represents continuous, categorical, or multiple covari-
ates, we replace p(d) and the Markov chain transition
probabilities with functions. We have chosen logistic
functions because they take values between zero and
one, they are often used to model discrete choice, and
they can be fit using well-studied logistic and polyto-
mous regression techniques. A similar use of logistic
functions in Markov chain mixture models was noted in
Smyth [17] in a clustering framework.

We use a to denote the vector of weights in the
logistic function approximating p. For every i,k € Z,
we use B, and B to denote the vector of weights
in the logistic functions approximating P}, v and Pf}c
respectively. These approximations are then as follows:

exp(a - 0)
1+ exp(a -0)’
exp(BN iy )
EzeI exp(ﬂz] 1, -6) ’
exp(B5_ ;.- 0)
EzeI eXp(IBz] 1,4 -0) .

(Here we assume that 6 includes a component of ones
such that the expressions -6, 82 . -6, and ,B,J i
include intercept terms.)

A potentially valuable set of information about a
visitor’s web usage behavior is the elapsed time between
clicks. We discuss a simple extension to the probability
estimation model that incorporates the time between
clicks into the procedure. Assume that at some point
in time we have observed a partial sequence of clicks
I, = (i1,i2,...,it) and a corresponding set of inter-
click times E; = (e1,e2,...,e;1). In this notation, we
assume that e; time units transpire between clicks i;
and ;41. We make the modeling assumption that, given
the data is generated by either the “buy” or “non-buy”
model, the joint distribution of e; and i;;1 depends on
the past only via ;.

Given these assumptions, incorporation of inter-
click times into the model is straightforward. Given
(Iy, E;), our estimate of the purchase probability is:

p(0)

‘Pi]jv_1 K7} (0) =

B
Pz']-_l,z'j 0 =

15— 1’l

PI‘{B|It,Et} =
p- Pr{It,Et|B}
p-Pr{ly, E;|B} + (1 — p) - Pr{l}, E;|N}

where:
PI‘{It,EtlB} = Pr{il,...,it,el,...,et_1|B}
= PI‘{’LllB} - Pr{el,i2|i1, B}
-Pr{62,i3li2,B} T
PI‘{It,Et|N} Pr{il,...,it,el,...,et_1|N}

= Pr{i1|N}-Pr{es,i2lir,N}
'PI‘{GQ,i3|i2,N} et

It remains to estimate the terms Pr{e;,i;4+1|¢;, B}
and Pr{e;,ij41)i;, N}. If we discretize the e; (say,
into “small,” “medium,” and “large” inter-click times)
such that we can write e; € & for a finite set
&, then these values can be estimated simply by
counting in the training data and normalizing such
that the probability estimates Pr{e],z]+1|z],B} and

Pr{e],z]+1|z],N} satisfy D .ceDoper Pr{e, k|B,i} =
Y ece Doker Pr{e,k|N,i} =1 for all i € Z.

3.3 Generation of Decision Rules. Once we are
able to estimate at each click the probability that the
visit results in a purchase, the question remains how to
use this information to make classification decisions in
time. We assume that immediately following each click,
we may either classify the visit as a “buy” visit, classify
the visit as a “non-buy” visit, or make no classification
(and await further information to be revealed). Once
a visit has been classified, the classification is assumed
irreversible.

We examine two classes of decision rules for making
timely classification decisions based on an evolving
sequence of probability estimates. The first class of rules
we consider are based on fixed probability thresholds
that remain constant through time. A second class of
decision rules are allowed to vary in time.

Fixed Threshold Rules. As there are three pos-
sible decisions available at any click, we require two
thresholds to define a set of fixed threshold rules. As-
sume that we have probability estimates Pr{B|I;} (or
Pr{B|I;,E;} or Pr{B|I;,6}) for some visit for each
t < T. Define sy and sp (Assume sy < sp.) such
that we classify a visit as a “buy” visit or a “non-buy”
visit after the first click ¢ such that Pr{B|L} < sy
or Pr{B|I;} > sp respectively. A sequence unclassi-
fied prior to click ¢ and with sy < Pr{B|;} < sp is
assigned no classification at click ¢. In our implementa-
tion, we will discretize the probability estimates so that



probabilities are discrete quantities from a finite set P.
In this framework there are (|P|+ 2)(|P| + 1)/2 sets of
fixed threshold rules possible. We can apply all possi-
ble sets of fixed threshold rules to a validation set and
choose the one that optimizes a performance measure
of interest.

Dynamic Decision Rules. In the class of dynamic
decision rules, we allow the classification decision to de-
pend on both the estimated probability Pr{B|I;} and on
t itself. This is a much larger class of decision rules than
in the fixed threshold case, and there are too many pos-
sible sets of decision rules to search exhaustively. We ap-
proach the generation of dynamic decision rules through
dynamic programming. (A reference on dynamic pro-
gramming is [3].) The output of the dynamic program
is, at each click ¢ and for every possible probability es-
timate, one of “classify as buy,” “classify as non-buy,”
or “make no classification.” We generate such decision
rules up to a planning horizon H, which we define to be
the last click at which we allow ourselves to make a clas-
sification decision. We assume that the consequences of
our classification actions are the following costs, which
we can view either as tuning parameters or as real costs
in a dynamic marketing system:

e cB(t), cN(t) := cost of classifying as “buy” or
“non-buy” respectively immediately following click
t when visit results in at least one purchase.

o cB(t), N(t) := cost of classifying as “buy” or
“non-buy” respectively immediately following click
t when visit does not result in a purchase.

e ¢o(t) := cost of the customer leaving the system
after click ¢ with no classification applied.

As we assume that classifications are irreversible, ex-
actly one of these costs is realized at some point during
each visit. We derive decision rules by minimizing the
expected visit cost given this cost structure.

We consider the evolution of a single visit sequence,
and formulate the dynamic program by specifying the
state, randomness, available controls, system dynamics,
and cost structure of the system over which we are
optimizing.

State

The state z; of the visit at time ¢ is defined as
follows. Let z; equal the current purchase probability
estimate if the visit is eligible for classification at click
t, and take the value -1 if the visit is not eligible for
classification at click ¢. This can occur either because
it has already been labeled or because the sequence
is shorter than ¢ clicks (i.e., the customer has left
the system). In our implementation, we discretize
the probability estimates so that the estimates are

quantities from a finite set P. Thus z; will take values
on PU{-1}.

Randomness

Define the following random variable for each click ¢:

{ PI'{B'IH_l}, if ¢ +1 S T
Pt =

~1,ift+1>T

Thus, if the visit includes a (¢ + 1)th click, then P
gives the (discretized) purchase probability estimate
immediately after click ¢ + 1. If the visit has fewer
than ¢ + 1 clicks, then P, = —1. We assume that the
sequence {FPy,...,Pg_1} evolves according to a non-
stationary Markov process with the following transition
probabilities:

bope = Pr{Piy1 = pi| P = p},
Vt=1,...,H, Vp1,po EPU{—].}.

Note that Q*;, ;, =1,Vt=1,...,H.

Having trained one of the models of Section 3.2 us-
ing a training data set, we use the fitted model to a
compute the value P; for each click in a validation data
set. These validation set estimates are then used to esti-
mate the elements of the transition probability matrices
Q*. Our evaluation of the resulting classification model
will rely on an independent test set.

We distinguish the assumption that the probabil-
ity estimates evolve in a Markovian fashion from the
Markov models of web navigation used in Section 3.2
to generate these probability estimates. In developing
the dynamic programming model, we assume that prob-
abilities evolve according to a Markov process, but we
do not rely on the details of the probability estimation
model. Dynamic programming models that specifically
rely on the Markovian nature of our probability estima-
tion models may yield improved improved results, and
we leave this topic for future work.

Control

The control u; at click ¢ takes one of three values: u?

(classify as “buy”), u™ (classify as “non-buy”), and u°
(make no classification). If 0 < z; < 1 then we allow
the control u; to take values on {u?,u®",u°}, and for

the case z; = —1 we require u; = u°.

System Dynamics

Based on the control u; and the random quantity P;, the
state x; of the visit evolves according to the following
system dynamics:

T =F
Tt+1 = {

—1if ug = uB,us = u?, or x; = —1
P, otherwise.



Expected Costs

In terms of the cost structure mentioned previously, we
can write the expected costs g(wz:,us) at click ¢ as a
function of the state z; and the control wu;:

a(-1,u%) = 0,
gi(z,uP) = mcB(t) + (1 - z)cq (t),

for 0 <z <1,
ge(ze,u®) = zee(t) + (1 — m)ey (#),

for 0 <z <1,
ge(xe,u®) Qit,,lco(t), for0<z; <1,t< H,

gu(zm,u’) = co(H), for 0 <zy < 1.

Dynamic Programming Iteration

We can now write the dynamic programming iteration
that solves the problem of selecting the optimal set
of thresholds. We define the value function Jy(z:) as
follows. Set Jy(—1) =0fort=1,...,H. For z; € P we
have:

At click H:

Ju(ry) = min{

At clickst=H —1,...,1:

zeB () + (1 = 2)eR (1),
2y (1) + (1 — 2)eN (D),
> QL (@) + @, ico®) -

pEP

Ji(zy) = min{

In each of the two expressions above, the first term
in the minimization gives the expected cost of a “buy”
classification, the second term gives the expected cost of
a “non-buy” classification, and the third term gives the
expected cost of postponing the classification decision.
The optimal decision rule for state z; at click ¢ is
determined by which of the three terms achieves the
minimum in these expressions. We can solve for these
decision rules in time proportional to H|P|*.

4 TImplementation and Results

4.1 Data. We demonstrate our methodology on a
data set derived from the web logs of a large retailer
of computers. As is typical among online computer
retailers, the site includes separate but parallel sections
targeted towards home users, small business customers,
educational customers, etc. Each section includes pages

devoted to general and specific product information,
special offers, and order status. Also available are
“configuration” pages where customers can customize
product specifications and view prices, a shopping cart
function, and a series of checkout pages.

The raw data corresponds to page views from a
representative sample of purchasing users and non-
purchasing users from all sections of the web site over
a 2-month period. Users were identified using cookie
information, and then separated into visits at 30-minute
breaks in activity.

The web site in question is vast. As is often the
case with real web log data, the data required several
cleaning steps to improve its consistency and to focus on
the types of users of value to the retailer. We eliminated
users with very many or very few page views on the
site (This filtering was done at the user level, meaning
that many wvisits with few clicks remained.), and with
significant numbers of clicks in sections of the web site
less interesting to the retailer. We realize that dynamic
classification requires that any data filtering of new data
be implementable in real time, although we have not
strictly adhered to this constraint here.

The resulting data set includes approximately
200,000 visits with clicks among approximately 7,000
unique URLs. There are an average of 10.7 clicks per
visit, and approximately 2% of visits include a purchase.
We note that these numbers are not necessarily repre-
sentative of the raw data due to the cleaning and filter-
ing steps we employed.

We assigned the data randomly by user to a training
set (50%), validation set (33%), and test set (17%).
The training set is used to fit the various probability
estimation models described in Section 3.2. We use
these fitted models to estimate purchase probabilities
for the visits in the validation set. These probabilities
are used in Section 4.4 to evaluate the probability
estimation models, and are also used to estimate the
parameters required for the decision rule generation
procedure described in Section 3.3. The test set is used
to generate the results of Section 4.5.

4.2 Content Categorization. As the original data
set includes on the order of 7,000 distinct URLs, it
is essential to reduce this set of symbols in order to
meaningfully apply techniques based on Markov chains.
To this end we have summarized this URL information
using a reduced set of content categories. In web mining
practice this is commonly approached by “stemming,”
which makes use of the directory information in the
URL address string. As the web site is not organized
in such a way that “stemming” gives consistently useful
categories, we have taken a modified approach.

We assign URLs to categories by searching for key-
words in the URL addresses themselves. The results
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Figure 2: Examples of estimated probability trajectories
produced by a mixture of second-order Markov models.
Note: The numbers of purchase and non-purchase visits

were not chosen proportional to their incidence in the
data.

are 11 content categories that include categories such
as “Homepages,” “Special offers,” “Choose and Config-
ure,” “Checkout,” and “Order Status.” We associate
each category with a letter from “a” to “k.”

The content categorization scheme allows us to
represent a visit sequence in a compact manner (e.g.,
“aadfgggg”), and it sharply reduces the number of states
in the Markov model and hence the number of model
parameters to be fit.

4.3 Overview of a Dynamic Classifier. We have
discussed two modeling components that constitute the
dynamic classifier: models for estimating purchase prob-
abilities and decision rules for time-sensitive classifica-
tion decisions. To illustrate the output of the proba-
bility estimation models, in Figure 2 we plot estimated
probability trajectories for several purchase and non-
purchase visits randomly selected from the validation
data. Results from a mixture of second-order Markov
models are presented. Figure 2 provides a reality check
of our probability estimation models, and we see that
our model appears capable of achieving some separation
between most purchase visits and most non-purchase
visits by the end of the visits. We observe that iden-
tifying purchase visits is straightforward once we have
observed a sequence of “Checkout” activity. Thus the
interesting challenges are to identify purchase visits be-
fore they enter the checkout sequence and to identify
non-purchasers before they leave the system.
Trajectories like those in figure 2 represent the
output of the probability estimation models and the
input to the decision rule models. Table 1 illustrates

Prob. Est.\t | 1]2[3]4]5]6]7]8]9]10
> 0.6065 Classify as “buy”’
0.3679-0.6065 l
0.2231-0.3679
0.1353-0.2231
0.0821-0.1353
0.0498-0.0821
0.0302-0.0498
0.0183-0.0302
0.0111-0.0183
0.0067-0.0111
0.0041-0.0067
0.0025-0.0041
0.0009-0.0025
< 0.0009

Make no classification

Classify as “non-buy”

Table 1: Example dynamic decision rules generated
using dynamic programming and based on probability
estimates generated using second-order Markov models.

the concept of dynamic decision rules. For each ¢
(up to a planning horizon of H = 10) and every
possible probability estimate (discretized on a grid of 14
bins), Table 1 shows example decision rules produced by
the dynamic programming algorithm. Note that fixed
threshold rules would appear on such a table as straight
horizontal classification boundaries. Using this table,
we classify a visit as a “buy” visit the first ¢ for which
the estimated probability enters the “Classify as buy”
region, and classify “non-buy” visits analogously.

This table says that a given click we should classify
high probability visits as “buy,” low probability visits as
“non-buy,” and postpone classification of the remaining
visits until more information is revealed. At the end of
the planning horizon approaches, the “buy” and “non-
buy” regions touch, since in our formulation there is no
value to postponing classification beyond the planning
horizon.

4.4 Evaluation of Probability Estimates. For
purposes of comparison, we have implemented several
purchase probability estimation schemes. The parame-
ters of each are estimated using the training data set.

e Zero : Mixture of zero-order Markov models with
no covariates.

e One : Mixture of first-order Markov models with
no covariates.

e Two : Mixture of second-order Markov models in
which we estimate purchase probabilities for all
possible second-order transitions. This is the model
represented in Figure 2.

e Pruned : Mixture of Markov models that in-
clude transitions up to fourth order, pruned back
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Figure 3: Cumulative lift curves for various probability
estimation models.

as described in Section 3.2 under the subheading
“Higher Order Models.” We found that including
transitions higher than fourth order did not yield
noticeable improvements in the quality of the prob-
ability estimates.

Covariate : Mixture of first-order Markov models
incorporating a numerical covariate, as described
in Section 3.2. The covariate used is the number of
clicks in the “Choose and Configure” page category
observed in the user’s previous visit (zero if the cur-
rent visit is the first observed visit associated with
the user). The particular covariate was chosen by
running logistic regressions of purchase probability
on several potential covariates and choosing the co-
variate with coefficient most significantly different
from zero.

e Time : The extension of the first-order model
that allows us to incorporate inter-click times into
the prediction model. For modeling purposes, we
discretize inter-click times into “small,” “medium,”
and “large,” as described in Section 3.2.

For the purpose of comparing the various probabil-
ity estimation models, we clip each visit at a randomly
selected click, and generated the cumulative lift curve
of Figure 3 based on probability estimates generated for
the clipped visits. The reason for the clipping is that
we are interested in predicting a purchase during a visit
rather than at the end of the visit (by which time the
purchase would have already taken place). The “Base-
line” benchmark shows expected performance if we were
to assign probability estimates to visits randomly.

We observe that the performance of the probabil-
ity estimation model seems to improve with the order

of the model. The second-order model achieves higher
lifts than the first-order model, which in turn outper-
forms the zero-order model. The higher order pruned
model performs marginally better than the second-order
model. The “Covariate” model improves little on the
first-order model that does not include the covariate in-
formation. We note that the “Time” model, not in-
cluded in the figure, gives results almost indistinguish-
able from the “One” model. Because it is conceptually
simple and performs well, we use the estimates produced
by the “Two” model in future steps of the analysis.

Table 2 shows the accuracy of the probability esti-
mates produced by the “Two” model. Using a 14-bin
discretization scheme, we allocate the visits of the val-
idation data to bins based on their estimated purchase
probabilities after various numbers of clicks. The en-
tries in Table 2 show, for each such bin, the fraction of
visits in that bin that actually result in a purchase. For
instance, the entry corresponding to click 15 and esti-
mated probability range “> 0.607” in Table 2 indicates
that of the validation set visits for which the second-
order Markov model’s purchase probability estimate at
click 15 is greater than 0.607, 62.2% of them actually
include a purchase.

We notice that for each column of Table 2, the ob-
served purchase frequencies tend to increase in the esti-
mated probabilities, indicating that our probability esti-
mation methods are achieving some separation between
purchase visits and non-purchase visits. However, they
do not consistently match the estimated probabilities in
magnitude.

Recall that when we use the dynamic programming
formulation to determine dynamic decision rules, we
require a representative purchase probability estimate
P, for each probability bin at each ¢. One method for
generating this estimate for a given bin is to average
the model-based probability estimates that fall into the
bin. Another method is to use the purchase frequency
observed for validation set visits in that bin. We have
generated dynamic decision rules using both methods,
and observed the latter to give slightly better results.
Thus we use this method in the results of Section 4.5.

4.5 Evaluation of Dynamic Classifiers. We eval-
uate our classification schemes on a test set of approxi-
mately 31,000 visits. We build dynamic classifiers based
on the probability estimates produced by the mixture of
second-order Markov models and on the decision rules
generated by the methods in Section 3.3. For the pur-
pose of generating decision rules, we discretize the esti-
mated purchase probabilities using 15 bins chosen based
on percentiles in the full set of probability estimates
in the validation data. We generate the dynamic deci-
sion rules using a planning horizon of H = 40, a hori-
zon longer than the majority of visit sequences. (We



Pr. Est. \ t 1 3 5 10 15
> 0.607 0.635 | 0.649 | 0.622
0.368-0.607 0.477 | 0.462 | 0.458
0.223-0.368 0.236 | 0.263 | 0.309
0.135-0.223 | 0.194 | 0.181 | 0.172 | 0.209 | 0.181
0.082-0.135 0.099 | 0.089 | 0.108 | 0.106
0.050-0.082 0.048 | 0.061 | 0.058 | 0.078
0.030-0.050 | 0.031 | 0.042 | 0.040 | 0.051 | 0.057
0.018-0.030 | 0.022 | 0.026 | 0.029 | 0.033 | 0.045
0.011-0.018 0.022 | 0.026 | 0.025 | 0.030
0.007-0.011 0.010 | 0.013 | 0.018 | 0.031
0.004-0.007 0.002 | 0.006 | 0.024 | 0.021
0.003-0.004 | 0.005 | 0.007 | 0.006 | 0.009 | 0.016
0.001-0.003 | 0.001 | 0.002 | 0.003 | 0.006 | 0.016
< 0.001 0.003 | 0.004 | 0.007 | 0.008

Table 2: Comparison of observed purchase frequencies
in the validation data set and purchase probabilities es-
timated using a mixture of second-order Markov mod-
els. Empty entries indicate few data are available for
the corresponding bin.

have experimented with various choices of H and found
that the models behave qualitatively similar for a broad
range of choices.) Except where otherwise mentioned,
we use cost structures that are constant in time. That
is, ceB(t) = cBB, cN(t) = cBN, etc.

We refer to the dynamic classifiers that make use
of the mixture of second-order Markov models and
fixed threshold rules as “FT classifiers” and those that
make use of the mixture of second-order Markov models
and dynamic decision rules as “DDR classifiers.” For
comparison, we also implement the following naive
classification heuristic: we classify a visit as “buy” the
first time we observe a page view in the “Checkout”
section of the site. Otherwise, we classify the visit as
“non-buy” at the Nth click. This heuristic is motivated
by the observation that a page view in the “Checkout”
section of the site is a strong indicator of purchase. Since
nearly all purchase visits must include a sequence of
“Checkout” clicks, this simple heuristic is effective at
detecting purchase visits, although not necessarily in
a timely fashion. We observe that the performance of
the naive heuristic depends substantially on the choice
of N, thus we implement the heuristic with N = 20
(“Naive20”) and with N = 40 (“Naive40”).

An ideal dynamic classifier would detect a large
number of “buy” visits, detect a large number of “non-
buy” visits, make classifications quickly, and make few
erroneous classifications. These various objectives can
be traded off in numerous ways in the selection of
decision rules, and thus evaluation and comparison of
dynamic classifiers are difficult. In this section we
explore a few of these tradeoffs and try to identify the
relative merits of the various classification methods.
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Figure 4: The tradeoff between detecting purchase
visits and detecting non-purchase visits. Solid shapes
represent F'T classifiers, while hollow shapes represent
DDR classifiers. “+” and “x” represent the Naive20 and
Naived0 classifiers respectively.

As we have mentioned, in our data set a page
view in the “Checkout” section of the site is a good
indication that the visit will result in a purchase. Thus
our naive heuristic is somewhat effective at detecting
purchase visits precisely and accurately. For instance,
the “Naive40” heuristic detects 90% of the purchase
visits in the test data set, while 48% of its “buy”
classifications are correct. In contrast, among fixed
threshold and dynamic decision rules tuned to detect
90% of the purchase visits, at most 38% of their “buy”
classifications are correct. The disadvantages of the
naive heuristic include its poor performance in detecting
non-purchasing visits, and the fact that it cannot be
adjusted to meet a wider range of objectives.

The FT and DDR classifiers, making use of our pur-
chase probability estimates, are quite flexible. Figure 4
illustrates the tradeoff between the fraction of purchase
visits detected and the fraction of non-purchase visits
detected. The classifiers represented are those classi-
fiers observed to achieve the highest percentage of non-
purchase visits detected in the test data set, given that
they detected approximately 20%, 80%, 90%, 95%, and
98% of the purchase visits respectively. In the case of
the FT classifiers (indicated by the solid shapes), the
decision rules were identified through exhaustive search
over the space of fixed threshold rules possible in our
probability discretization scheme. In the case of the
DDR classifiers (indicated by the hollow shapes), the
plotted points represent dynamic decision rules whose
tuning parameters were chosen through a trial-and-error
process. We also include the performance of the naive
classifiers on the plot.
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Figure 5: Performance of several classifiers, cumulative in discrete time.

We observe that not only can the FT and DDR clas-
sifiers be tuned to detect a larger number of purchase
visits than the naive heuristics, they are considerably
more adept at detecting non-purchase visits. We ob-
serve that the FT and DDR classifiers appear similar
in this performance space, although the DDR classifier
appears to have a slight edge in detecting non-purchase
visits.

We would like not only to detect as many purchase
and non-purchase visits as possible, but to do so in
a timely fashion. We consider the FT and DDR
classifiers in Figure 4 that detect 95% of purchase visits.
We will refer to these classifiers as FT95 and DDR95
respectively. The classifiers’ performance detecting
purchase visits and non-purchase visits, accumulated by
t, is plotted in Figure 5. We also show the results from
a DDR classifier (DDR-V) tuned using cost parameters
that vary in time.

We observe that the FT95, DDR95, and DDR-
V classifiers detect purchase visits sooner than the
naive heuristics, while detecting considerably more non-
purchase visits. FT95, for example, detects “buy” visits
quite quickly. DR95 detects purchase visits more slowly,
but it is better at detecting non-purchase visits. Its
“buy” visit classifications are also more accurate, with
14% of its “buy” visit classifications correct versus only
7% for the FT95 model. The DDR-V classifier shows the
versatility of the DDR method, as it detects purchase
visits more quickly than even the FT95 classifier without
sacrificing performance at detecting non-purchase visits.
However, only 5% of its “buy” classifications are correct.
We include the DDR-V classifier as an illustration of
how different cost structures can be used to tune the
classifiers for accurate and timely performance.

A final way we consider comparing the various
dynamic classification methods is through a set of costs
like those used in the derivation of the dynamic decision

rules in Section 3.3. If these represent real expected
costs in a marketing system, then the total cost of
a classifier measured on a test data set provides a
useful assessment of the model. We have used various
choices of cost parameters to choose fixed threshold
rules and fit dynamic decision rules, then measured
their performance on the test set using the same cost
structures. While both the FT classifiers and DDR
classifiers consistently outperform the naive heuristic,
they give similar results to each other over a wide
range of cost parameters. In the absence of a set of
realistic cost parameters, this comparison method has
been inconclusive in distinguishing the FT and DDR
classifiers.

5 Conclusions and Future Research

We have posed the interesting and relevant problem of
dynamic classification of customers in an online environ-
ment. Our specific interest is in predicting purchases
at the visit level of web navigation sequences. Using
Markovian models of web navigation, we have presented
a methodology for incrementally mapping web naviga-
tion patterns to estimates of purchase probability. We
have developed extensions of our models to account for
second- and higher-order transition information and to
incorporate covariates summarizing the customer’s past
behavior and the elapsed time between page views. We
have also developed time-sensitive methods for gener-
ating decision rules based on the purchase probability
estimates. These decision rules include fixed thresholds
and dynamic decision rules that we generate using dy-
namic programming.

We have illustrated our techniques on real web log
data from a large computer retailer. Our probability
estimation methods yield usable results, with second-
and higher-order Markov navigation models yielding
better lifts than simpler models based on low-order



Markov models. Our dynamic classification methods
outperform a heuristic based on domain knowledge, and
have the added advantage of being tunable so that
we can identify models that balance the conflicting
objectives of detecting purchase visits, detecting non-
purchase visits, producing accurate classifications, and
making classifications quickly.

We recognize several directions for further research.
The first is to see if our methods perform well on similar
data sets. It remains to be seen how well our methods
apply to different types of web sites selling different
types of items (e.g. non-durable goods).

In addition, we believe that our methods merit ap-
plication to a wider range of data sets and classification
problems. Although we developed a simple extension of
our model to incorporate information on demographics
and browsing histories, it would be interesting to exam-
ine more closely prediction on a user level rather than
just on a visit level. It would also be interesting to con-
sider classification targets other than the “buy” /”non-
buy” classification we consider here. We are particularly
interested in dynamic assignment of customers to multi-
way targets such as clusters or marketing segments.

Finally, we believe that our methods mark a first
step towards time- and cost-sensitive classification of
customer sequences, where customer sequences are more
broadly defined to include shopping cart activities,
navigation information from multiple sites, and even
interactions through other channels such as call centers.
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